Installation and Setup of
G I gA+ (from version 0.1-8.50 and higher)

Install the package, get a license

Download the package suitable for your system from the website, then untar it and execute the
installation script as root. For instance, on a Debian-derived Linux distro:

~/tmp$ tar -xzvf ./gigaplus 0.1.9-0-gigaplus.x86_64.deb.tar.gz
gigaplus.deb
Install-deb.sh

~/tmp$ sudo ./install-deb.sh ./gigaplus.deb
Preparing to unpack ./gigaplus.deb ...
Unpacking gigaplus (©.1-9.9) ...

~/tmp$

Your copy is not licensed yet, so if you run gxng, you’ll see the following message:

$ gxng -V

gxng (Relay engine) ©.1-9.0 (gigaplus) regular [Ubuntu 16.04.3 Linux
(amd64) - 4.4.0-131-generic/x86 _64] (udefined) 65c1091d/9; built on
2018-07-25

= ERROR: License not found, please contact support@gigapxy.com ==

License validation failed, application will quit.




Alicense isissued based on a key, generated by GigA+. The key ties it up to the server the application
would run on. Get the key as:

$ gigaplus key
System key: [4083b942140de80b8f2bbac@ee7be479e59allc7dc8f429d] (0x410a)

NB: sudo gigaplus key under FreeBSD

Copy the full output (including the value in round brackets) into an email to request a demo license
from support@gigapxy.com. Your license will arrive in a tarball containing gxa.lic - the license file.
Copy gxa.lic to/etcdirectory and run gxng module to check that the license works.

$ gxng -V

gxng (Relay engine) 0.1-9.0 (gigaplus) regular [Ubuntu 16.04.3 Linux
(amd64) - 4.4.8-131-generic/x86_64] (2018-12-31) 65c¢1091d/2253082; built on
2018-07-25

NB: sudo -u gigaplus gxng -V under FreeBSD

You’re now licensed till January 31st,2018 (2018-12-31) - but please make sure to renew in
advance.

NB: If license check fails: make sure UDP port 123 (NTP) is open for outgoing requests.

Set up the environment

GigA+ requires a system-scope initialization file - gigaplus.env. The file’s location depends on the
0S: /etc for Linux, /usr/local/etc - for FreeBSD. Environment setup is invoked via the
gigaplus setup, gigaplus beingthe application’s control script.

The set up presents a series of dialogs and the menu to review selected choices. Before you launch the
setup, make sure mail/mailx is installed and functions on your box, test-send a couple of messages
to your sysadmin email to check. Prepare for the following questions:

How many GigA+ engines (gxng’s) will run on this box?

Will you be using gxng or NginX for HLS-segment delivery?

Will you be using HLS + HTTP, HTTP-only or HLS-only streaming?

Do you want to pin each gxng to a distinct CPU core?

Do you want to use a special non-system partition for core dumps? (GigA+ enables those.)

ok W

When ready, run from the console:


mailto:support@gigapxy.com

The setup results get saved at /etc/gigaplus.env (Linux)or /usr/local/etc/gigaplus.env.

Create configuration (gigaplus.conf)

Master configuration file, gigaplus. conf, is to be created using a template at
/opt/gxa/etc/gigaplus-default.conf. Use any text editor you like.

The reason to edit gigaplus.conf manually is simple: you’ll need make corrections there a few
times yet. Before we proceed to editing, | suggest reading (at least) the GigA+ core manual:

Let’s copy the template and edit it:

There’ll be a few sections to address, related to different modules.

If you’re beginning to wonder about the meaning of all the parameters with no adjacent comment),
you may read a respective man page or study a commented config file:

NB: Use /usr/local/share/doc/... on FreeBSD.

CONFIG: Request listeners (ws.listener)

Make sure you agree with the default access ports and the network interfaces the requests would be
available from. Mind that admin requests might be sensitive to allow on all interfaces. Use your
judgement.

In the above example we allow admin requests only on the local interface (same box) and let user
requests come from eth0, ports not changed.

CONFIG: Multicast interface (ws.multicast_ifc)

|



This is also set to “all” by default, but should be a distinct network interface instead; otherwise the OS
will pick one for you and will assume that all multicast data should originate there.

CONFIG: HLS settings (ws.hls.*)

The most important setting hereisws .hls.enabled. If you don’t plan to use HLS, just set it to false
and move on to theng.* (gxng) section of the config.

CONFIG: Buffer subsystem (ng.bufd.*)

Buffer subsystem is responsible for caching HTTP-stream data. If you are not planning to use linear,
non-HLS streams, then you don’t need it. Turn it off, it consumes a lot of memory (it needs it).

If you do need HTTP streams, then you’ll need to do a few experiments with the settings in this section
until you find your perfect combination of start mode, segment number and size.

CONFIG: Playlist manager (gpm.*)

If you only use HTTP streaming and do not use HLS, then you’re done - go to the end of this chapter,
save and copy the config.

Or read on the next module:

CONFIG: Item-URL prefix (gpm.item_url_prefix)

Initially set to an intentionally bogus value:

You need to make sure the prefix makes sense for your box and your access port. Let’s say, the host,
where you install, has an external address 187.12.22.5, then (assuming you’ve not changed the
default gxws user-request port 4046 to something else), the initial part is http://187.12.22.5:4046.



The hls-fra segment means one would be using gxws/gxng to transfer HLS segments to clients. If
that’s the plan, then the edited setting would become:

However, if your chose NginX (or any other 3rd party tool) for uploading HLS segments, you need to
provide the prefix that would route to the segment data. Let’s assume that you’ve configured access
to the data via port 8088 and tvdata segment.

Then your prefix becomes:

In the end, gxpm will use the prefix to form URL’s within HLS playlists. For a cinemax (channel)
segment, such a URL might be:

Example:

http://187.12.22.5:8088/tvdata/cinemax/2018-08-01/104933021.ts

CONFIG: client playlists per channel (gpm.max_src_tasks)

This number specifies how many distinct playlists can there be per channel. There is only one LIVE
playlist per channel but as many DVR playlists as there are clients (negative time-shift DVR playlists
are the exception, there it’s one playlist per shift). If using DVR, adjust this number (not to exceed 512).

Finalizing

For the simplest scenario (no load balancing or replication), this is all that needs to be done. We save
gigaplus.conf and copyitoverto /etc or/usr/local/etc (on FreeBSD).

Add a channel (HLS)

Each stream the will be served via HLS requires a specification file. The master script (gigaplus)
handles creation of channel specs via a series of N-curses dialogs. However, before the script is called
to create a channel, let’s gather some information (needed for each of the channels to be created).

1. URL of the source stream (in ffmpeg-compatible format). It makes sense to check (from the
installation host, mind you!) if the URL yields any data. Tools: ffprobe, wget, ncl
(GigaTools);

|



2. How many minutes/hours worth of data are you going to store or the server? If you’re not
doing DVR, leave it to the default 10 minutes, otherwise it’s your call. If you’re handling large
amounts of data, should you be using shards?

3. Areyou going to spread HLS-segment requests across multiple hosts (i.e. replicate segments)?

Once you have the answers, we proceed:

At the end we should have the spec file ready and the channel recognized by the master script:

Note that the channel has been immediately suspended so that it does not get started automatically.
When ready, you need to enable it.

Now it’s time to start the show.




The channel is ready to be watched. You can see which modules are running, their PIDs in square
brackets. An upkeep process is watching every module, shown here as U[NN], where NN = upkeep’s
own PID.

Now we can check the status:

$ gigaplus status

gxpm [10695] running; uptime: ©0d @0h:10m:14s | U[10720]
gxws [10894] running; uptime: ©0d @0h:10m:14s | U[10919]
gxng [10952] running; uptime: ©0d ©0h:10m:13s | U[10978]
gxng [11009] running; uptime: ©0d @oh:10m:12s | U[11037]
----- channels -----

(ON) boleslavska [565 MB] uptime: ©@d @@h:10m:14s

Let’s watch the channel. From a client we run:

$ cvlc -vvv http://192.168.1.173:4046/hls-m3u/boleslavska/playlist.m3u8

Should be watching it now.

So, the first channels in online. Run sudo gigaplus create, add another channel. Repeat until
you’ve got them all. Congratulations!

Troubleshooting

Check the logs

The answer to the question “What went wrong?” is often in the logs. Logs for the core modules can be
found in /opt/gxa/log directory. Logs for the channel-bound modules/scripts are in the channel
directory, for instance, /opt/gxa/channel/boleslavska. The first logto look atis vsm.log. vsmis
the shell script responsible for ingesting the channel stream.

In vsm. log you may find references to other logs that are also in the channel directory. If something is
wrong with the stream (bad URL, no connection, no data. etc.), one of gxseg logs is most likely to hold
aclue.

Cannot connect to gxws(1)

If you simply cannot connect to the primary port (usually 4046), corresponding to gxws (1), then the
first thing to check is whether gxws (1) receives your requests. See if /opt/gxa/log/gxws.log
holds the clue to that. If no requests come through, it might be the firewall (allow 4046 /tcp).



Probe the stream

Another thing to consider, when things don’t work out with a channel is: how is the stream doing? See
if it runs at all, probe it with ffprobe to see if its format is ok. Don’t probe from your desktop, do it
from the server where the issue is, please.

Seek outside help

If all of the above fails, write to support (support@gigapxy.com). There is also a Google+ community
where all sorts of information could be found. A Telegram-based support channel is there for
interactive help.

Enjoy GigA+!



mailto:support@gigapxy.com
https://t.me/joinchat/GadA3QuLCNl8nHTVlafhmQ

